Devil’s Staircase – Rotation Number of Outer Billiard with Polygonal Invariant Curves

نویسنده

  • Zijian Yao
چکیده

In this paper, we discuss rotation number on the invariant curve of a one parameter family of outer billiard tables. Given a convex polygon η, we can construct an outer billiard table T by cutting out a fixed area A from the interior of η. T is piece-wise hyperbolic and the polygon η is an invariant curve of T under the billiard map φ. We will show that, if β ∈ η is a periodic point under φ with rational rotation number τ = p q , then φ is not the local identity at β. This proves that the rotation number τ as a function of the parameter A is a devil’s staircase function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Chip-firing on the Complete Graph: Devil’s Staircase and Poincaré Rotation Number

We study how parallel chip-firing on the complete graph Kn changes behavior as we vary the total number of chips. Surprisingly, the activity of the system, defined as the average number of firings per time step, does not increase smoothly in the number of chips; instead it remains constant over long intervals, punctuated by sudden jumps. In the large n limit we find a “devil’s staircase” depend...

متن کامل

Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections

The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material.  The freque...

متن کامل

On algebraically integrable outer billiards

We prove that if the outer billiard map around a plane oval is algebraically integrable in a certain non-degenerate sense then the oval is an ellipse. In this note, an outer billiard table is a compact convex domain in the plane bounded by an oval (closed smooth strictly convex curve) C. Pick a point x outside of C. There are two tangent lines from x to C; choose one of them, say, the right one...

متن کامل

On Polygonal Dual Billiard in the Hyperbolic Plane

Given a compact convex plane domain P , one defines the dual billiard transformation F of its exterior as follows. Let x be a point outside of P . There are two support lines to P through x; choose one of them, say, the right one from x’s view-point, and define F (x) to be the reflection of x in the support point. This definition applies if the support point is unique; otherwise F (x) is not de...

متن کامل

Chip-Firing And A Devil’s Staircase

The devil’s staircase – a continuous function on the unit interval [0,1] which is not constant, yet is locally constant on an open dense set – is the sort of exotic creature a combinatorialist might never expect to encounter in “real life.” We show how a devil’s staircase arises from the combinatorial problem of parallel chip-firing on the complete graph. This staircase helps explain a previous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014